Commutative Algebra Sheet 1

R denotes a commutative ring with 1. We assume that $1 \neq 0.$ 'Module' will mean '*R*-module'.

1. Let Y be a multiplicatively closed subset of a ring R, with $0 \notin Y$. Prove that any ideal P maximal w.r.t. $P \cap Y = \emptyset$ is prime.

2. Let P_1, \ldots, P_n be prime ideals in a ring and I any ideal. Show that if $I \subseteq P_1 \cup P_2 \cup \ldots \cup P_n$ then $I \subseteq P_j$ for some j.

3. Let $\theta : M \to N$ and $\phi : N \to M$ be module homomorphisms such that $\theta \circ \phi = Id_N$, i.e. $\theta\phi(x) = x \ \forall x \in N$. Show that $M = \ker \theta \oplus \phi(N)$.

4. Let M be an extension of A by B (modules), i.e. $A \leq M$ and $M/A \cong B$. (i) Show that if M is finitely generated then so is B. (ii) Show that if both A and B are finitely generated then so is M. Is the converse true, in general? (iii) Deduce that M is Noetherian if and only both A and B are Noetherian.

5. Let F be a free module with basis X. Let B be an arbitrary module and let $\theta : X \to B$ be an arbitrary mapping. Show that there exists a unique module homomorphism $\theta^* : F \to B$ such that $\theta^*(x) = \theta(x)$ for every $x \in X$.

Deduce (i) every module is a homomorphic image of a free module, and an n-generator module is a homomorphic image of \mathbb{R}^n ; (ii) if \mathbb{R} is Noetherian then every finitely generated \mathbb{R} -module is Noetherian.

6. Let F be a free module and let $f: M \to F$ be an epimorphism from a module M onto F. Show that there exists a homomorphism $h: F \to M$ such that $f \circ h = \text{Id}_F$. (*Hint*: for each $x \in X$, a basis for F, choose a pre-image of x under f.)

Deduce: If N < M and M/N is free then N has a complement in M, i.e. there exists a submodule C of M such that $M = N \oplus C$.

7. (i) Let M be a module. Show that if M is not Noetherian then M has a submodule N such that N is not finitely generated but A is finitely generated whenever $N < A \leq M$.

(ii) Let R be a ring. Prove: if every prime ideal of R is finitely generated then R is Noetherian. [*Hint*: Take M = R in (i). Then $N \ge BC$ where N < B and N < C. Note that B/BC is a Noetherian R/C-module.]